Skip to main content

Posts

Showing posts from August, 2025

Find domain of inverse sine function - jelet 2024 - jelet previous year question solution by sandip sir jelet academy

Problem: 1: Find domain of inverse sine function Solution: **Assumptions:** *   The function is defined over real numbers. *   Standard definitions of inverse trigonometric functions and logarithms are used. 1.  **Identify Domain Restrictions:**     The function is $f(x) = \sin^{-1} \left( \log_2 \left( \frac{x^2}{2} \right) \right)$.     For $f(x)$ to be defined, two conditions must be met:     *   The argument of the inverse sine function must be in the interval $[-1, 1]$.     *   The argument of the logarithm function must be strictly positive. 2.  **Apply Logarithm Domain Condition:**     The argument of $\log_2$ is $\frac{x^2}{2}$.     $\frac{x^2}{2} > 0$     This implies $x^2 > 0$, which means $x \ne 0$. 3.  **Apply Inverse Sine Domain Condition:**     The argument of $\sin^{-1}$ is $\log_2 \left( \frac{x^2}{2} \right)$.     $-1 \le...