Find domain of inverse sine function - jelet 2024 - jelet previous year question solution by sandip sir jelet academy
Problem: 1: Find domain of inverse sine function
Solution:
**Assumptions:**
* The function is defined over real numbers.
* Standard definitions of inverse trigonometric functions and logarithms are used.
1. **Identify Domain Restrictions:**
The function is $f(x) = \sin^{-1} \left( \log_2 \left( \frac{x^2}{2} \right) \right)$.
For $f(x)$ to be defined, two conditions must be met:
* The argument of the inverse sine function must be in the interval $[-1, 1]$.
* The argument of the logarithm function must be strictly positive.
2. **Apply Logarithm Domain Condition:**
The argument of $\log_2$ is $\frac{x^2}{2}$.
$\frac{x^2}{2} > 0$
This implies $x^2 > 0$, which means $x \ne 0$.
3. **Apply Inverse Sine Domain Condition:**
The argument of $\sin^{-1}$ is $\log_2 \left( \frac{x^2}{2} \right)$.
$-1 \le \log_2 \left( \frac{x^2}{2} \right) \le 1$
Since the base of the logarithm is $2$ (which is greater than $1$), we can exponentiate all parts of the inequality with base $2$ without changing the direction of the inequalities.
$2^{-1} \le \frac{x^2}{2} \le 2^1$
$\frac{1}{2} \le \frac{x^2}{2} \le 2$
4. **Solve the Compound Inequality:**
This compound inequality can be split into two separate inequalities:
* **Inequality 1:** $\frac{1}{2} \le \frac{x^2}{2}$
Multiply by $2$: $1 \le x^2$
Rearrange: $x^2 \ge 1$
This inequality holds when $x \le -1$ or $x \ge 1$.
In interval notation: $(-\infty, -1] \cup [1, \infty)$.
* **Inequality 2:** $\frac{x^2}{2} \le 2$
Multiply by $2$: $x^2 \le 4$
Take the square root of both sides: $\sqrt{x^2} \le \sqrt{4}$
$|x| \le 2$
This inequality holds when $-2 \le x \le 2$.
In interval notation: $[-2, 2]$.
5. **Combine All Conditions:**
We need to find the intersection of all valid $x$ values:
* $x \ne 0$
* $(-\infty, -1] \cup [1, \infty)$
* $[-2, 2]$
The intersection of $(-\infty, -1] \cup [1, \infty)$ and $[-2, 2]$ is:
$([-2, 2]) \cap ((-\infty, -1] \cup [1, \infty))$
$= ([-2, 2] \cap (-\infty, -1]) \cup ([-2, 2] \cap [1, \infty))$
$= [-2, -1] \cup [1, 2]$
The condition $x \ne 0$ is already satisfied by the interval $[-2, -1] \cup [1, 2]$, as $0$ is not included in this set.
The domain of the function $f(x)$ is:
$\boxed{[-2, -1] \cup [1, 2]}$
Comments
Post a Comment